

Institut Scientifique de Service Public

Prélèvements d'effluents industriels CWEA P-13 et P-14

Sébastien Adam

Formation préleveurs sols et déchets Octobre 2025

Formation « préleveurs »

P 13 – Méthode de prélèvement des effluents industriels au moyen d'un échantillonneur automatique

Programme

- 1. Références
- 2. Introduction
- 3. Echantillonneur automatique
- 4. Sécurité
- Mise en place
- 6. Paramétrage
- 7. Séquençage proportionnel au débit/temps
- 8. Période d'échantillonnage Conditionnement des flacons Maintenance

Références

ISO 5667-10

Introduction

Effluent industriel = grande variabilité dans le temps Echantillon ponctuel = NON (effet de pépite)

-> Echantillon composite

Etude préalable du processus industriel pour bien définir :

- Son programme analytique,
- Son séquençage de prélèvement (fonction du débit)
- Ses consignes et EPI de sécurité

Echantillonneur automatique

Composition

Ligne de prélèvement : neutre, usage unique, Φ i >= 9 mm, crépine ouverture >= 5 mm

Pompe : à dépression ou péristaltique (à recommander) , vitesse ascensionnelle >= 0,5 m/s, ΔH < 6 à 7 m

Contrôleur : séquençage, bras, interface mesure externe, logger du frigo

Conteneur réfrigéré : o - 4 °C

Port informatique pour interface

Sécurité

Mesures spécifiques à l'entreprise

Plan de sécurité – casque – chaussures sécur.

Milieu confiné

- Moniteur gaz (CH4, CO2, CO, O2, PID/COV)
- Jamais seul (harnais, longe, visible, voix)

Effluent lui-même

- Masque adéquat,
- Gants, bottes, lunettes...
- Désinfection

Trappe - Balisage

Mise en place

Site proprement dit

Pas souvent le choix de l'implantation Canalisation propre

Ligne de prélèvement

La plus courte possible – pas de col de cygne Régime turbulent

Crépine en aval ou amont artéfact (en théorie à 1/3 hauteur surface)

Créer une retenue si niveau d'effluent faible

Précautions

Scellement de l'échantillonneur (tant pis pour la ligne)

En cas de gel -> isolation thermique

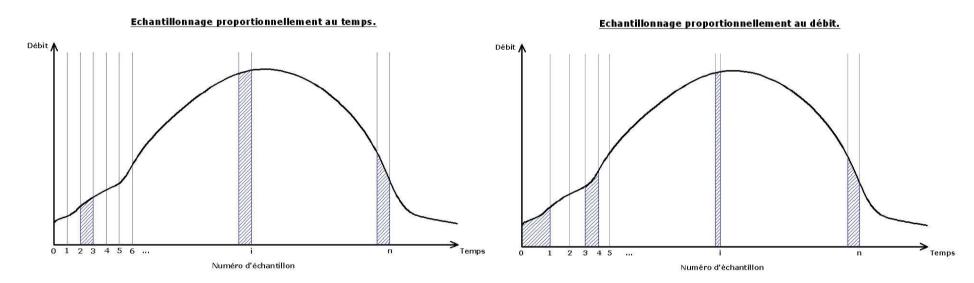
Paramétrage

Paramètres

Volume élémentaire ajusté avant séquencement

Aliquote >= 50 ml

Rinçage préalable de la ligne à chaque prélèvement


Si volume final < volume analytique -> appoint ponctuel -> rapport

Séquençage proportionnel au débit/temps

Prélèvement proportionnel au temps/débit :

Chaque aliquote ayant la même pondération, si on échantillonne proportionnellement au temps, on sous-estime les rejets pendant les débits élevés par rapport aux débits faibles. Ce n'est pas le cas si on prélève proportionnellement au débit.

Séquençage proportionnel au débit/temps

Rejet continu à débit variable :

- Mono flacon ./. débit,
- Multi-flacons ./. temps et reconstitution de l'échantillon final sur bes de données débitmétriques disponibles
- Mono flacon, ./. Temps

Rejet séquentiel ou discontinu:

- Mono flacon ./. débit après déclenchement sur fonctionnement de la pompe ou augmentation du niveau d'eau
- Mono flacon ./. Temps après déclenchement sur fonctionnement de la pompe ou augmentation du niveau d'eau

Séquençage proportionnel au débit/temps

Volume analytique

Volume minimum pour remplir l'ensemble des flacons destinés au laboratoire

Échantillonnage ./. débit

Estimation préalable du débit pour dimensionner au mieux le pas d'échantillonnage

Échantillonnage ./. temps

Cadence suffisante pour fournir le volume analytique

Volume prélevé insuffisant

Si le volume prélevé est insuffisant, il faut faire un appoint ponctuel (aussi faible que possible) et le signaler dans le rapport.

Période d'échantillonnage – Conditionnement des flacons -Maintenance

Période d'échantillonnage

Elle doit en principe couvrir tout le processus industriel (min 24h pour la taxe) Attention à l'altération de certains paramètres (ex : DBO5, volatils...): prélèvement ponctuel

Conditionnement

Flacon(s) primaire(s) non conditionné(s) – Flacons destinés au laboratoire conditionnés

Maintenance

Ligne de prélèvement à usage unique ou dédicacée Vu son prix, le segment de pompe est rincé et remplacé si besoin Jonctions des tuyaux nettoyées.

Formation « préleveurs »

P 14 – Méthode de mesure du débit d'un effluent industriel en canalisations ouvertes ou non en charge

Programme

- 1. Références
- 2. Introduction
- 3. Artefacts permettant la mesure indirecte du débit
- 4. Types de sondes de mesure
- 5. Placement des sondes
- 6. Etalonnage

Références

ISO 1438 (déversoirs)
ISO 4359 (canaux jaugeurs)

Introduction

Pourquoi mesurer le débit ?

Déterminer une charge = concentration x débit x temps

- Calcul de la taxe eaux usées
- Contrôle d'une autorisation
- Contrôle d'un processus (autocontrôle)

Asservir une séquence de prélèvements

Comment?

Mesures directes: Q = V x S (deux mesures)

Mesures indirectes: H -> Q via un artefact

Artefacts permettant la mesure indirecte du débit

Artefacts

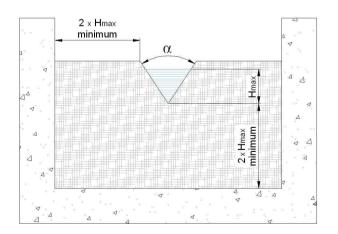
Ouvrage créant une retenue à l'amont duquel le niveau monte ou descend et se stabilise à débit constant. On en déduit une relation directe entre H et Q

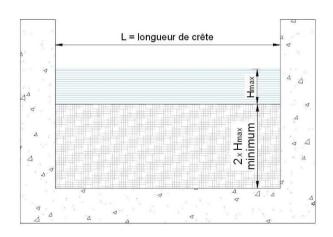
Déversoirs à parois minces

Paroi avec bord de fuite à 45°

La lame d'eau se déverse librement -> pas de relation entre les niveaux amont et aval

Artefacts permettant la mesure indirecte du débit


Déversoirs à parois minces


Echancrure triangulaire : $Q = C \times H^{2,5}$ (erreur de mesure sur H à la puissance 2,5!)

Echancrure rectangulaire sans contracture : $Q = C \times L \times H^{1,5}$ (erreur de mesure sur H à la puissance 1,5!)

Echancrure rectangulaire avec contracture

Echancrure trapézoïdale

Artefacts permettant la mesure indirecte du débit

Canaux jaugeurs – Effet Venturi Déversoir ou venturi?

Déversoir plus précis mais gamme plus réduite Attention : encrassement à l'amont Venturi plus cher mais facile d'entretien

Puits de mesure

H stable (effet vaguelette écrêté) H fidèle (effet mousse écrêté) Pas d'encrassement.

Types de sondes de mesure

Sondes immergées

Encrassement – Obstruction

Mesure directe du débit : sondes effet Doppler (vitesse) + jauge pressiométrique (H) : il faut des particules en suspension mais pas trop

Mesure indirecte du débit : sondes pressiométriques (piézométrique ou bulleur)

Types de sondes de mesure

Sondes émergées

Mousse - Vent

Pas d'encrassement.

Mesure directe du débit : RADAR (+ultrason)

Mesure indirecte du débit : sondes à ultrasons

Placement des sondes

Où

En amont d'un artefact (à une distance de 3 à 5 x H max)

Idéalement dans un puits

Maitrise de son câblage

Proche du H max

Au milieu

Étalonnage

Usine constructeur Sur site (vérification du niveau annoncé)

P 14 – Méthode de mesure du débit d'un effluent industriel en canalisations ouvertes ou non en charge

MERCI POUR VOTRE ÉCOUTE

