

ANNEXE B1: LISTE DES VALEURS LIMITES (VSH, VSNAPPE, VSNAPPE [VOLATILISATION]) RELATIVES A LA PROTECTION DE LA SANTE HUMAINE A UTILISER AU STADE DE L'ESR-SH POUR LES POLLUANTS NORMES ET LEURS PRINCIPES D'ETABLISSEMENT

Version 06

Table des matières

Préan	nbule	3
B1-1.	Valeurs limites	4
B1-2.	Principes d'établissement des VSH	10
B1-2	2.1. Calcul des VSH avec l'application 1 du logiciel S-Risk®	10
B1-2	2.2. Types d'usage et scénarios d'exposition standards	11
B1-2	2.3. Propriétés du sol générique	14
	2.4. Propriétés physico-chimiques et valeurs toxicologiques de référence	
	2.5. Cas particuliers	
	1-2.5.1 Hydrocarbures pétroliers	
	1-2.5.2 Mercure	
	1-2.5.3 Isomères du xylène et du 1,2-dichloroéthène	
	Liste des polluants volatils	
B1-4.	Références	20
	e des Tableaux	
Table	au 1. Valeurs seuil pour la santé humaine (VSH) et concentration à saturation	5
Table	au 2. Valeurs limites définies pour les eaux souterraines (relatives à la protection de la santé humaine)	7
Table	au 3. Scénarios standards à utiliser dans le logiciel S-Risk® pour chaque type d'usage repris dans le décret sols pour le calcul des VS _H	11
Table	au 4. Scénario le plus contraignant pour les usages IV et V selon le polluant normé considéré	12
Table	au 5. Voies d'exposition par défaut considérées pour les différents scénarios standards	14
Table	au 6. Composition des fractions globales	16
Table	au 7. Polluants volatils (normés et non normés) présents dans le logiciel S-Risk®	18

Préambule

L'Annexe B1 reprend les valeurs limites (VS_H, VS_{nappe}, VS_{nappe} [volatilisation]) relatives à la protection de la santé humaine et leurs principes d'établissement, et ce uniquement pour les polluants repris dans l'Annexe 1 du décret sols. Les valeurs limites définies pour les eaux souterraines sont explicitées à l'Annexe C1 (cf. GRER Partie C).

Il est à noter que <u>ces valeurs limites ne sont pas des valeurs normatives</u> et peuvent exclusivement être utilisées soit dans le cadre de l'ESR-SH relative à une pollution historique, soit dans le cas d'une analyse des risques résiduels, ou encore, dans le cas d'une pollution nouvelle, pour déterminer l'urgence de l'assainissement.

Les valeurs seuil pour la santé humaine (VS_H) ont été calculées en utilisant l'outil d'évaluation des risques pour la santé humaine, S-Risk® WAL, ci-après dénommé S-Risk®.

Les différences observées dans les valeurs des VS_H qui sous-tendent les normes du décret sols 2018 (par rapport au DS 2008) peuvent notamment s'expliquer par :

- la définition d'**un** nouveau **sol standard wallon** (dans le GRER partie B v02 : 3 sols standards proposés, définis sur base de 3 usages différents) ;
- l'utilisation d'un autre logiciel d'évaluation des risques pour la santé humaine qui diffère légèrement des outils précédents :
 - Les paramètres d'exposition utilisés dans les différents scénarios d'exposition ont été actualisés (taux d'ingestion de particules de sol, ...);
 - Les équations de transfert permettant d'appréhender les transferts sol-plante et sol-air sont différentes;
 - o La prise en compte des enfants à partir de 1 an (et non 4 ans);
 - o ...
- la révision et l'harmonisation des valeurs toxicologiques de référence (VTR) en Wallonie, notamment au niveau de la cancérogénicité de certaines substances ;
- la prise en compte séparée des effets « à seuil » et des effets « sans seuil » pour les polluants présentant ces deux types d'effets ; la valeur la plus contraignante ayant été retenue.

B1-1. Valeurs limites

Les valeurs seuil pour la santé humaine définies pour les sols (**Tableau 1**) sont précisées pour les cinq types d'usage du décret sols :

- type I: naturel;

- type II: agricole;

- type III : résidentiel ;

- type IV: récréatif ou commercial;

- type V: industriel

Les scénarios représentant ces différents usages sont décrits au Chapitre 9 « *Human exposure* » du guide technique du logiciel S-Risk®, disponible sur https://www.s-risk.be/documents.html.

La **concentration à saturation** dans le sol (C_{sat}) est également mentionnée dans le **Tableau 1**. La C_{sat} correspond à une concentration théorique en polluant dans le sol à laquelle les limites d'adsorption aux particules du sol, de solubilité dans l'eau interstitielle du sol et de saturation des gaz dans l'air du sol sont atteintes. Au-dessus de C_{sat}, du produit en phase libre est susceptible d'être présent. La concentration saturante va permettre, d'une part, de déterminer par exemple la présence de produit en phase libre sur le terrain et, d'autre part, de déterminer à quelle concentration dans le sol (C_{sol}) la dose d'exposition par inhalation est maximale¹.

Ces valeurs sont calculées sur base des caractéristiques du sol standard (repris au point B1-2.3 et décrit à l'Annexe B4) selon l'équation suivante (US-EPA, 2013) :

$$C_{sat_i} = \left(\frac{S_i^E}{\rho_b}\right) * (K_{oc} * f_{oc} * \rho_b + \theta_w + H' * \theta_a) \quad [mg/kg]$$

Avec

C_{sat_i}	La concentration à saturation du polluant i (mg/kg)
S_{i}^{E}	La solubilité dans l'eau du polluant i (mg/L)
$ ho_b$	La densité apparente du sol sec (kg/L) soit 1,236 kg/L pour le sol standard wallon
K_{oc}	Le coefficient de partition carbone organique-eau (L/kg)
f_{oc}	La fraction de carbone organique du sol
	soit 0,0133 (g/g) pour le sol standard wallon
$\Theta_{\rm w}$	La teneur volumétrique en eau (m³/m³)
	soit 0,287 pour le sol standard wallon
H'	La constante de Henry sans dimension
Θ_a	La teneur volumétrique en air (m³/m³)
	soit 0,247 pour le sol standard wallon

¹ La dose d'exposition par inhalation n'augmentera plus malgré une augmentation de la concentration dans le sol car ce-dernier est théoriquement saturé.

Remarque importante pour les fractions d'hydrocarbures pétroliers :

La Concentration à saturation (C_{sat}) est souvent dépassée pour les fractions d'hydrocarbures pétroliers. La C_{sat} dépend fortement du type de sol (et du contenu en matières organiques) et de la solubilité des différentes fractions d'hydrocarbures pétroliers. Il est difficile de fixer une C_{sat} applicable à chaque situation. Pour le calcul des flux d'intrusion de vapeurs des composés organiques volatils, l'outil S-Risk® ne tient plus compte d'une augmentation de la concentration au-delà de la C_{sat} (limitation à la solubilité du polluant), il est d'ailleurs précisé que le modèle ne couvre pas la présence de produit en phase libre. Des recommandations sont formulées dans le GRER partie B, section 2.4.3.3., point E.1.

Tableau 1. Valeurs seuil pour la santé humaine (VSH) et concentration à saturation

En gras, les valeurs dépassent la CSAT (concentration à saturation)

Le tiret "-" signifie que les concentrations dépassent le kg de polluant par kg de sol. Valeurs surlignées en gris = VS du décret sols (car VS_H calculée < VS)

Valeurs limites		VS _H (mg/kg _{m.s.})						
	I	II	III	IV	V	C _{sat} (mg/kg)		
Type d'usage	Usage naturel	Usage agricole	Usage résidentiel	Usage récréatif ou commercial	Usage industriel			
Métaux lourds et métallo	ïdes	•						
Arsenic	30,00	30,00	40,00	40,00	65,00	-		
Cadmium	2052,00	10,85	32,52	1192,00	1192,00	-		
Chrome	3204,00	178,30	290,70	3204,00	7043,00	-		
Chrome VI	250,20	8,53	25,96	95,04	95,04	-		
Cuivre	87880,0	1516,00	2504,00	87880,00	182000,00	-		
Mercure	37,38	1,1	1,75	37,38	572,43	-		
Nickel	3978,00	264,80	349,50	3803,00	3803,00	-		
Plomb	120,00	200,00	200,00	390,00	1840,00	-		
Zinc	186200	259,00	5222,00	186200	374000	-		
Hydrocarbures aromatiq	ues monocyclic	ues non halo	génés					
Benzène	143,60	0,10	0,10	0,7	0,7	2373,06		
Ethylbenzène	1930,00	0,32	0,35	3,21	3,21	486,66		
Toluène	50050	9,16	9,75	125,00	126,10	1066,04		
Xylènes	125600	6,36	6,45	74,94	76,63	544,61 ²		
Styrène	127300	18,11	18,11	143,70	143,70	2689,82		
Phénol	18970,0	10,79	16,23	9927,00	9927,00	55150,72		
Hydrocarbures aromatiq	ues polycycliqu	es	1	1	•			
Naphtalène	278100	3,72	3,72	29,56	29,56	597,25		
Acénaphtylène	91700	1154,00	4267,00	91700	176900	1324,05		
Acénaphtène	27400,0	3323,00	4183,00	27400,00	176800	930,41		
Fluorène	18270,0	2272,00	2922,00	18270,00	119400	646,88		
Phénanthrène	18270,0	2147,00	3006,00	18270,00	119500	867,28		
Anthracène	9170,00	964,60	1225,00	9170,00	17700,00	38,83		

² Valeur moyenne des C_{sat} obtenues pour les différents isomères (m-xylène : C_{sat} = 478,54mg/kg / o-xylène : C_{sat} = 400,84mg/kg / p-xylène : C_{sat} = 754,45mg/kg)

VS _H (mg/kg _{m,s.})						
		I II III IV V				
Type d'usage	Usage naturel	Usage agricole	Usage résidentiel	Usage récréatif ou commercial	Usage industriel	(mg/kg)
Fluoranthène	9171,00	448,60	1329,00	9171,00	17760,00	571,67
Pyrène	13700,0	1136,00	2653,00	13700,00	89620	136,23
Benzo(a)anthracène	917,10	35,09	149,10	917,10	1776,00	145,83
Chrysène	9171,00	80,56	1588,00	9171,00	17760,00	10,47
Benzo(b)fluoranthène	917,10	12,99	157,80	917,10	1776,00	1,82
Benzo(k)fluoranthène	917,10	7,94	158,20	917,10	1776,00	4,62
benzo(a)pyrène	91,71	0,87	15,33	91,71	177,60	81,47
Dibenzo(ah)anthracène	91,62	0,81	15,37	91,62	176,80	13,58
Benzo(g,h,i)pérylène	9171,00	170,20	1589,00	9171,00	17760,00	0,32
Indéno(1,2,3-c,d)pyrène	917,10	8,07	158,80	917,10	1776,00	1,75
Hydrocarbures halogénés						
Dichlorométhane	2789,00	0,44	0,57	10,59	10,59	10904,26
Trichlorométhane	20,38	0,10	0,10	0,1	0,1	9400,99
Tetrachlorométhane	108,50	0,05	0,05	0,5	0,50	2022,44
Tetrachloroéthène (PCE)	442,90	0,20	0,20	1,45	1,45	570,85
Trichloroéthène (TCE)	112,80	0,05	0,06	0,77	0,77	1994,84
1,2-Dichloroéthène (somme) (DCE)	129,74	0,10	0,10	0,58	0,60	621,473
Chloroéthène (VC)	0,46	0,10	0,10	0,10	0,10	2151,84
1,1,1 – trichloroéthane (1,1,1-TCA)	-	5,78	5,79	65,73	67,42	1687,94
1,1,2 – trichloroéthane (1,1,2 - TCA)	315,30	0,10	0,10	1,20	1,20	4786,04
1,2 – dichloroéthane (1,2 - DCA)	119,20	0,10	0,10	0,32	0,32	5060,52
Cyanures	T		T	1	1	
Cyanures libres	160,00	2,00	2,00	2,00	2,00	-
Autres composés organiqu Methyl-tert-butyl-éther	7378,00	1,51	2,24	43,48	43,48	13645,95
(MTBE)						
Hydrocarbures pétroliers Fractions EC aliphatiques						
EC>5-6 alip		36,31	36,34	411,70	422,50	626,12
EC>5-6 alip EC>6-8 alip	-	90,83	90,87	411,70	422,30	341,22
EC>6-8 alip EC>8-10 alip	50010	21,78	21,80	50010	195100	187,83
EC>8-10 alip EC>10-12 alip	50150,0	111,60	111,80	50150	300800	114,41
EC>10-12 alip EC>12-16 alip	50170,0	8191,00	8757,00	50170	304200	50,74
EC>12-16 alip EC>16-21 alip	- 50170,0	178000	194000	-	-	20,98
EC>21-35 alip	-	9753,00	194100	-	-	2,15
Fractions EC aromatiques		7730,00	174100	1		2,10
EC _{>6-7 arom} (benzène)	143,60	0,10	0,10	0,70	0,70	2373,06
EC>7-8 arom (toluène)	50050,0	9,16	9,75	125,00	126,10	1066,04
EC>8-10 arom	25680,0	29,86	31,57	406,70	409,10	1391,47
EC>10-12 arom	20030,0	111,90	128,90	20030,00	112100	841,71
10-12 UIVIII	_5555,6	111,70	120,70	_0000,00	1	0 11,7 1

 $^{^3}$ Valeur moyenne des C_{sat} obtenues pour les différents isomères (cis- : C_{sat} = 698,79mg/kg / trans- : C_{sat} = 544,15mg/kg)

Valeurs limites						
valeurs iimiles						
		II	=	IV	V	C _{sat}
Type d'usage	Usage naturel	Usage agricole	Usage résidentiel	Usage récréatif ou commercial	Usage industriel	(mg/kg)
EC>12-16 arom	20060,0	328,80	601,00	20060,00	120400	388,02
EC>16-21 arom	15050,0	2443,00	2657,00	15050,00	91160	137,17
EC>21-35 arom	15050,0	2758,00	2909,00	15050,00	91190	11,05
Fractions EC globales						
Fraction EC>5-8	953,96	6,00	6,00	6,00	9,00	-
Fraction EC>8-10	38941,65	24,00	24,03	1330,42	1357,03	-
Fraction EC>10-12	34559,43	111,69	116,43	34559,43	199867,70	-
Fraction EC>12-16	34592,86	1002,14	1726,81	34592,86	208645,78	-
Fraction EC>16-21	48464,75	7890,64	8582,40	48464,75	250568,98	-
Fraction EC>21-35	48464,75	5538,72	9369,03	48464,75	250636,97	-

Les valeurs limites pour les eaux souterraines sont indépendantes de l'usage considéré et sont reprises au **Tableau 2**.

Tableau 2. Valeurs limites définies pour les eaux souterraines (relatives à la protection de la santé humaine)

NP - non pertinent - s'applique aux métaux lourds.

Valeurs surlignées en gris = VSnappe du décret sols (car VSnappe[volatilisation] recalculée < VSnappe)

En gras, les valeurs dépassent la solubilité de la substance (ces substances ne sont par conséquent pas susceptibles de poser un risque pour la santé humaine par volatilisation)

	EAUX	SOUTERRAINES
	Annexe 1 du « décret sols »	Propositions GRER (via S-Risk®)
Valeurs limites	VS _{nappe}	VSnappe[volatilisation] (1)
Valeus infines		μg/L
Métaux/métalloïdes		
Arsenic	10	NP
Cadmium	5	NP
Chrome	50	NP
Chrome VI	9	NP
Cuivre	100	NP
Mercure	1	NP
Mercure inorganique	non précisé	NP
Monométhylmercure	non précisé	1300
Mercure élémentaire	non précisé	2,182
Nickel	20	NP
Plomb	10	NP
Zinc	200	NP
Hydrocarbures aromatiques monoc	cycliques non halogénés	
Benzène	10	255,4
Ethylbenzène	300	517,8
Toluène	700	19770,0

	EAUX S	SOUTERRAINES
	Annexe 1 du « décret sols »	Propositions GRER (via S-Risk®)
Valeurs limites	VSnappe	VSnappe[volatilisation] (1)
valeurs iimiles		μg/L
Xylènes (somme)	500	7245,0 ⁽²⁾
o-xylène	non précisé	7967,0
p-xylène	non précisé	7245,0
m-xylène	non précisé	8485,0
Styrène	20	6525
Phénol	120	1752000,0
Hydrocarbures aromatiques polycyclic	ques non halogénés	
Naphtalène	60	596,2
Acénaphtylène	70	279500
Acénaphtène	180	47870
Fluorène	120	66130
Phénanthrène	120	131200
Anthracène	75	1280
Fluoranthène	4	42750
Pyrène	90	326900
Benzo(a)anthracène	7	4225
Chrysène	1,5	322200
Benzo(b)fluoranthène	1,5	33390
Benzo(k)fluoranthène	0,8	34190
Benzo(a)pyrène	0,7	4761
Dibenzo(a,h)anthracène	0,7	19900
Benzo(g,h,i)pérylène	0,3	549400
Indeno(1,2,3-c,d)pyrène	0,22	51530
Hydrocarbures chlorés	'	
Dichlorométhane	20	10030
Trichlorométhane	200	200
Tétrachlorométhane	2	69,47
Tétrachloroéthène (PCE)	40	172,4
Trichloroéthène (TCE)	70	173,6
1,2-Dichloréthène (DCE) (somme)	50	142,6 (2)
1,2-Dichloréthène (cis)	non précisé	280,7
1,2-Dichloréthène (trans)	non précisé	142,6
Chloroéthène (VC)	5	5
1,1,1-Trichloroéthane (1,1,1-TCA)	500	12650
1,1,2-Trichloroéthane (1,1,2-TCA)	12	640,2
1,2-Dichloroéthane (1,2-DCA)	30	249,2
Cyanures		l
Cyanures libres	70	70
Autres composés organiques		
Methyl-tert-butyl-éther (MTBE)	300	57510
	•	•

	EAUX S	OUTERRAINES
	Annexe 1 du « décret sols »	Propositions GRER (via S-Risk®)
Valeurs limites	VSnappe	VSnappe[volatilisation] (1)
valeurs illillies		μg/L
Hydrocarbures pétroliers		
Fractions EC aliphatiques		
EC>5-6 alip	non précisé ⁽³⁾	8464
EC>6-8 alip	non précisé ⁽³⁾	5578
EC>8-10 alip	non précisé ⁽³⁾	189,7
EC>10-12 alip	non précisé ⁽³⁾	126,7
EC>12-16 alip	non précisé ⁽³⁾	-
EC>16-21 alip	non précisé ⁽³⁾	-
EC>21-35 alip	non précisé ⁽³⁾	-
Fractions EC aromatiques	I	l
EC>6-7 arom (benzène)	non précisé ⁽³⁾	255,4
EC>7-8 arom (toluène)	non précisé ⁽³⁾	19770
EC>8-10 arom	non précisé ⁽³⁾	6294
EC>10-12 arom	non précisé ⁽³⁾	21360
EC>12-16 arom	non précisé ⁽³⁾	-
EC>16-21 arom	non précisé ⁽³⁾	-
EC>21-35 arom	non précisé ⁽³⁾	-
Fractions EC globales (4)	I	
Fraction EC>5-8	60	non précisé ⁽⁵⁾
Fraction EC>8-10	200	non précisé ⁽⁵⁾
Fraction EC>10-12	200	non précisé ⁽⁵⁾
Fraction EC>12-16	200	non précisé ⁽⁵⁾
Fraction EC>16-21	300	non précisé ⁽⁵⁾
Fraction EC>21-35	300	non précisé ⁽⁵⁾

- (1) Les valeurs de VS_{nappe[volatilisation]} sont calculées en utilisant l'application 3 du logiciel S-Risk® (utilise le module VOLASOIL). Ces valeurs sont calculées pour un scénario résidentiel (III). Ces valeurs correspondent à la concentration dans l'eau souterraine assurant un indice de risque (ou excès de risque individuel pour les polluants présentant des effets sans seuil) lié à l'inhalation (IR_{inh} ou ER_{linh}) égal à 1 (ou à 10⁻⁵ pour les polluants présentant des effets sans seuil). Les seules voies d'exposition considérées sont l'inhalation d'air intérieur, extérieur et l'inhalation de vapeurs durant la douche (voie d'exposition minoritaire). Pour les polluants présentant les deux types d'effets (à seuil et sans seuil), la VS_{nappe[volatilisation]} a été estimée pour les différents effets, la valeur la plus contraignante a été retenue.
- (2) La VS_{nappe[volatilisation]} de la somme des xylènes et du 1,2-dichloroéthène retenue correspond à la VS_{nappe[volatilisation]} de l'isomère présentant la VS_{nappe[volatilisation]} la plus contragnante.
- (3) Les VS_{nappe} pour les fractions aromatiques et aliphatiques ne sont pas reprises dans le décret sols. Les VS_{nappe} sont toutefois disponibles dans le GRER partie C Annexe C-1.
- (4) En considérant que chaque fraction exprimée en EC est constituée de 70 % de composés aliphatiques et 30 % d'aromatiques.
- (5) Les consignes à suivre pour procéder à la comparaison aux VS_{nappe_volatilisation} en l'absence de split aromatique/aliphatique sont reprises dans l'Annexe A1 du GRER partie A

B1-2. Principes d'établissement des VSH

Dans le cadre de l'utilisation des méthodes de l'ESR-SH, les hypothèses à la base des calculs des valeurs seuil pour la santé humaine pour chaque type d'usage (I à V) doivent être connues de manière à pouvoir vérifier si elles sont applicables au site étudié ou si les écarts observés s'inscrivent dans le sens de la précaution⁴. Ces hypothèses sont présentées ci-dessous.

Les VSH sont estimées sur base:

- des algorithmes et paramètres par défaut repris dans S-Risk® pour chaque voie d'exposition.
- d'un usage repris dans le décret sols. A chaque usage correspond un scénario d'exposition standard. Celui-ci précise les voies, les durées et les fréquences d'exposition.
- du sol générique défini pour la Wallonie.
- des propriétés physico-chimiques et des valeurs toxicologiques de référence définies pour chaque substance.

B1-2.1. Calcul des VSH avec l'application 1 du logiciel S-Risk®

Les équations reprises dans le logiciel S-Risk®, logiciel d'évaluation des risques pour la santé humaine liés aux cas de pollution des sols, ont été utilisées pour le calcul des VS_H. Une version wallonne prenant en compte les paramètres de sols wallons ainsi que des VTR à utiliser en Wallonie est disponible. L'application 1 de ce logiciel permet de calculer, sur base du sol générique pour un scénario standard défini, la concentration dans le sol en un polluant correspondant à un niveau de risque fixé (IR=1, pour les polluants présentant des effets « à seuil », ou ERI=10-5, pour les polluants présentant des effets « sans seuil »). Cette application a été utilisée pour calculer les VS_H en Wallonie.

Les équations de transfert ainsi que les valeurs des paramètres de transfert et d'exposition sont détaillées dans le *Technical Guideline* du logiciel S-Risk® (Cornelis & al, 2017) et dans son Annexe III (Cornelis, 2017).

Pour rappel, les risques sont estimés par polluant, pour chaque scénario d'exposition pour les effets « à seuil » et pour les effets « sans seuil ».

Les risques pour un polluant présentant des effets « à seuil » sont estimés par catégorie d'âge : de 1 à 6 ans, de 6 à 15 ans et > 15 ans (adulte). Dans ce cas, la concentration dans le sol correspondant à un niveau de risque de 1 est calculée pour chaque catégorie d'âge, et la valeur la plus basse est retenue⁵.

Pour les polluants présentant des effets « sans seuil », les risques sont calculés sur la vie entière (70 ans). Ainsi, la concentration en polluant correspondant à un excès de risque individuel de 10-5 est retenue.

Le logiciel S-Risk® distingue les effets systémiques des effets locaux. Pour un polluant présentant des effets systémiques, les risques estimés pour les différentes voies d'exposition (par inhalation, orale et cutanée) sont additionnés. Par contre, pour les polluants présentant des effets locaux, les risques sont fournis pour chacune des voies d'exposition.

⁴ Il est à noter à ce titre que les types d'usage à considérer en fonction de l'utilisation du terrain qui sont repris à l'Annexe 2 du décret sols ont été établis en combinant différentes logiques de classement dont celles – mais pas exclusivement – de l'analyse des risques. Il en résulte que les types d'usage inscrits (et scénarios standards correspondants) peuvent dans certains cas ne pas être suffisamment précautionneux. Ils sont donc à vérifier de façon systématique sur base des informations figurant dans le guide technique du logiciel S-Risk®.

⁵ À l'exception du scénario industriel pour lequel l'exposition des adultes est uniquement prise en compte.

Pour un polluant présentant plusieurs types d'effets (cancérigène et non cancérigène, local et systémique), les calculs sont réalisés pour les différents types d'effets. La concentration dans le sol la plus basse est retenue comme VS_H. Ce choix permet de s'assurer que les VS_H calculées sont suffisamment protectrices de la santé humaine.

Les VS_H recalculées à l'aide de l'application 1 du logiciel S-Risk® n'ont pas toujours été conservées car elles étaient parfois plus contraignantes que les VS du décret sols. Les règles générales suivantes ont donc été appliquées :

- Si la VS_H recalculée par S-Risk® est moins contraignante que la VS_H du GRER partie B V02 → Conservation de la valeur recalculée par S-Risk®.
- Si la VS_H recalculée par S-Risk® est plus contraignante que la VS_H du GRER partie B V02 MAIS moins contraignante que la VS du décret sols → Conservation de la valeur recalculée par S-Risk®.
- Si la VS_H recalculée est plus contraignante que la VS_H du GRER partie B V02 ET plus contraignante que la VS du décret sols → Utilisation de la VS du décret sols.

B1-2.2. Types d'usage et scénarios d'exposition standards

Les scénarios standards qui ont été retenus dans le logiciel S-Risk® pour calculer les VS_H pour chacun des 5 types d'usage du décret sols sont repris au **Tableau 3**.

Tableau 3. Scénarios standards à utiliser dans le logiciel S-Risk® pour chaque type d'usage repris dans le décret sols pour le calcul des VS_H

Types d'usage décret sols	Scénarios standards logiciel S-Risk®
Type I– Naturel	Récréatif (dont sport) (REC _{out})
Type II – Agricole	Agricole (AGR)
Type III – Résidentiel	Résidentiel avec jardin potager (RES _{veg})
Type IV – Récréatif ou commercial	Récréatif sport intérieur (REC _{in}) Récréatif sport extérieur (REC _{out}) Industriel léger (IND _{light} - scénario commercial)
Type V – Industriel	Industriel léger (IND _{light} - activités intérieures) Industriel lourd (IND _{heavy} - activités extérieures)

Pour l'usage de type IV et de type V du décret sols, une seule VS_H est retenue. La valeur la plus contraignante obtenue avec les différents scénarios possibles a été conservée. Le **Tableau 4** reprend le scénario le plus contraignant pour l'usage de type IV et l'usage de type V pour chaque polluant repris dans le décret sols.

Tableau 4. Scénario le plus contraignant pour les usages IV et V selon le polluant normé considéré

	Scéno	Scénario le plus contraignant selon le type d'usage						
Type d'usage	IV (Réc	réatif/comm	V (industriel)					
	RECin	RECout	INDlight	INDlight	IND _{heavy}			
Métaux/métalloïdes								
Arsenic		х			х			
Cadmium			х		х			
Chrome		х			х			
Chrome VI			х	Х				
Cuivre		х			х			
Mercure		х			х			
Nickel		х			х			
Plomb		Х			х			
Zinc		х			х			
Hydrocarbures aromatiques mon	ocycliques non ho		1		1			
Benzène			х	X				
Ethylbenzène			х	Х				
Toluène	x			Х				
Xylènes	x			X				
Styrène			х	X				
Phénol			х	X				
Hydrocarbures aromatiques poly-	cycliques non hal	ogénés						
Naphtalène			х	Х				
Acénaphtylène		х			х			
Acénaphtène		х			х			
Fluorène		х			х			
Phénanthrène		Х			х			
Anthracène		х			х			
Fluoranthène		х			х			
Pyrène		х			х			
Benzo(a)anthracène		х			х			
Chrysène		х			х			
Benzo(b)fluoranthène		х			х			
Benzo(k)fluoranthène		x			X			
benzo(a)pyrène		х			х			
Dibenzo(ah)anthracène		X			X			
Benzo(g,h,i)pérylène		X			X			
Indéno(1,2,3-c,d)pyrène		X			X			
Hydrocarbures chlorés	I							
Dichlorométhane			Х	X				
Trichlorométhane	х			X				
Tetrachlorométhane			х	X				

	Scénario le plus contraignant selon le type d'usage						
Type d'usage	IV (Réd	créatif/comn	nercial)	V (ind	ustriel)		
	RECin	RECout	IND _{light}	IND _{light}	IND _{heavy}		
Tetrachloroéthène (PCE)			х	х			
Trichloroéthène (TCE)			х	X			
1,2-Dichloroéthène (somme) (DCE)	х			Х			
Chloroéthène (VC)	х			X			
1,1,1 - trichloroéthane (1,1,1-TCA)	х			х			
1,1,2 - trichloroéthane (1,1,2 - TCA)			х	Х			
1,2 - dichloroéthane (1,2 - DCA)			х	X			
Cyanures			1				
Cyanures libres	х			Х			
Autres composés organiques							
Methyl-tert-butyl-éther (MTBE)			х	х			
Hydrocarbures pétroliers	I						
Fractions EC aliphatiques							
EC>5-6 alip	х			х			
EC>6-8 alip			х	х			
EC>8-10 alip ⁶				х			
EC>10-12 alip		Х			х		
EC>12-16 alip		х			х		
EC>16-21 alip		Х			х		
EC>21-35 alip		Х			х		
Fractions EC aromatiques	ı		<u> </u>				
EC _{6-7 arom} (benzène)			х	X			
EC>7-8 arom (toluène)	х			Х			
EC>8-10 arom	х			Х			
EC>10-12 arom		х			х		
EC>12-16 arom		х			х		
EC>16-21 arom		Х			х		
EC>21-35 arom		х			х		
Fractions EC globales			I.				
EC>5-8	х			Х			
EC>8-10		Х		Х			
EC>10-12		х			х		
EC>12-16		х			х		
EC>16-21		Х			х		
EC>21-35		X			x		

⁶ Réaliser les 3 scénarios pour l'usage de Type IV.

Les voies d'exposition retenues pour les différents scénarios d'exposition standards sont indiquées dans le **Tableau 5**.

Tableau 5. Voies d'exposition par défaut considérées pour les différents scénarios standards.

Main all ann ailt an	Scénario standard						
Voie d'exposition	RECout	AGR	RES _{veg}	RECin	IND _I & IND _h		
Orale							
Ingestion de sol	Х	Х	X		X		
Ingestion de poussières intérieures		Х	X	Х	X		
Ingestion de légumes		Х	Х				
Ingestion de viande et de lait		Х					
Ingestion d'eau de boisson		Х	Х		X		
Par contact cutané							
Contact cutané avec le sol	Х	Х	Х		X		
Contact cutané avec poussières intérieures		Х	Х	Х	X		
Contact cutané avec l'eau (douche et bain)		Х	Х				
Par inhalation							
Inhalation air extérieur (gaz et particules)	Х	Х	X		X		
Inhalation air intérieur (gaz et particules)		Х	X	Х	X		
Inhalation de vapeurs (douche)		Х	Х				

Pour évaluer l'inhalation d'air intérieur, le scénario utilisé par défaut dans le logiciel S-Risk® est la présence d'une cave avec sol fissuré (et non la présence d'un vide-ventilé, utilisé dans la version 2 du GRER partie B).

B1-2.3. Propriétés du sol générique

Le calcul des contributions de chaque voie d'exposition à la dose totale fait intervenir des paramètres spécifiques au sol (pH, teneur en matière organique, densité apparente, ...) ou au site (profondeur de la nappe, profondeur moyenne de la pollution, ...).

Pour le calcul des VS_H, des valeurs par défaut ont été fixées pour ces paramètres. Ces valeurs par défaut sont issues d'un traitement statistique des caractéristiques pédologiques des sols wallons repris dans la base de données AARDEWERK, contenant les propriétés des profils pédologiques décrits lors de la caractérisation des unités de la carte des sols de Belgique. Les « propriétés du sol standard » issues de ce travail statistique sont données à l'**Annexe B4**.

B1-2.4. Propriétés physico-chimiques et valeurs toxicologiques de référence

Pour le calcul des VS_H, les propriétés physico-chimiques caractérisant les substances listées à l'Annexe 1 du décret sols sont reprises dans les « substances data sheets » publiées sur le site https://www.s-risk.be/ ainsi que dans le logiciel S-Risk[®]. Les paramètres physico-chimiques des polluants sont identiques dans les différentes versions du logiciel S-Risk[®] (version Flandre/Bruxelles et version wallonne).

Les valeurs toxicologiques de référence caractérisant ces polluants ont été définies pour la Wallonie. La procédure de sélection est décrite à l'**Annexe B3**. Les VTR sélectionnées sont reprises dans cette annexe mais également dans les « substances data sheets ».

Ces données ont une influence sur le calcul de la valeur seuil pour la santé humaine.

B1-2.5. Cas particuliers

B1-2.5.1 Hydrocarbures pétroliers

La méthodologie suivie pour l'établissement des valeurs seuil pour la santé humaine pour les hydrocarbures pétroliers (HP) diffère de celle suivie pour d'autres polluants organiques dans la mesure où ils sont constitués d'un mélange de polluants aux propriétés physico-chimiques et toxicologiques distinctes. Ils comprennent notamment les carburants (essence, diesel, kérosène), les combustibles (mazout léger et lourd) et les lubrifiants (huiles neuves ou usées, graisses).

La méthodologie se fonde sur les travaux existants émanant :

- du Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) (1997, 1999);
- du US State of Massachusetts Department of Environmental Protection Approach (MaDEP, 2002);
- de l'American Petroleum Institute (API, 2001);
- du RIVM, plus spécifiquement les travaux de Franken et al. (1999), Lijzen et al. (2001), Baars et al. (2001);
- de la Flandre (Nouwen et al., 2001; OVAM, 2004).

De façon générale, la méthodologie est basée sur l'utilisation conventionnelle de différentes fractions - <u>exprimées en équivalent carbone</u>⁷ - constitutives des hydrocarbures pétroliers en les distinguant selon leur nature aliphatique et aromatique.

Les principes pour la sélection de ces **différentes fractions**, sont détaillés à l'annexe A1 du GRER partie A. Pour chacune des fractions considérées, les valeurs seuil pour la santé humaine - notées VS_{H-fraction all ECI} et VS_{H-fraction} arom ECI - sont obtenues par l'application de la procédure de calcul des normes pour le sol telle que définie précédemment, en tenant compte des propriétés physico-chimiques et des valeurs toxicologiques de référence qui leur sont propres.

S'agissant plus particulièrement des valeurs toxicologiques de référence proposées par le TPHCWG (Reference Dose - RfD; Reference Concentration - RfC) spécifiques aux fractions, il est à noter que leur utilisation est associée aux limitations suivantes :

- la toxicité des fractions est supposée ne pas changer significativement avec l'« altération » du produit ;
- la composition des fractions est supposée ne pas varier significativement du substitut testé (composé
 indicateur ou mélange de composés spécifique à une fraction);
- les interactions toxicologiques des différentes fractions sont supposées être additives.

⁷ Le nombre d'équivalent carbone (EC) d'un composé organique donné fournit le nombre d'atomes de carbone d'un n-alcane hypothétique qui aurait le même point d'ébullition et le même temps de rétention dans une colonne chromatographique que celui dudit composé organique.

Sur base des valeurs seuil pour la santé humaine établies pour chacune des fractions aromatiques et aliphatiques (VS_{H-fraction ECi-arom} et VS_{H-fraction ECi-ali}), une valeur seuil pour une fraction globale (VS_{H-fraction ECi}) – exprimée également en EC – est déterminée sur base des hypothèses suivantes :

- 6 fractions globales (fraction EC>5-8, fraction EC>8-10, fraction EC>10-12, fraction EC>12-16, fraction EC>12-16, fraction EC>12-35) sont considérées, regroupant sans distinction des composés de types aliphatiques et aromatiques, qui pourront être obtenues sur la base d'un « découpage » de chromatogrammes⁸;
- chaque fraction globale est constituée conventionnellement de 70 % de composés aliphatiques et 30 % d'aromatiques ;
- au sein de chaque fraction globale, l'additivité des risques pour les composés aromatique(s) et aliphatique(s) (non carcinogènes)⁹ est supposée.

Le **Tableau 6** ci-dessous précise les fractions aromatiques et aliphatiques constitutives de chacune des fractions globales.

Tableau 6. Composition des fractions globales

Fraction globale EC	Composition des fractions globales
EC>5-8	EC>5-6 ali EC>6-8 ali EC>6-7 arom EC>7-8 arom
EC>8-10	EC>8-10 ali EC>8-10 arom
EC>10-12	EC>10-12 ali EC>10-12 arom
EC>12-16	EC>12-16 ali EC>12-16 arom
EC>16-21	EC>16-21 ali EC>16-21 arom
EC>21-35	EC>21-35 ali EC>21-35 arom

 $^{^8}$ Il s'agit des chromatogrammes obtenus, d'une part, pour la plage C_{10-40} correspondant aux « huiles minérales » et, d'autre part, pour la plage C_{5-10} correspondant aux « huiles volatiles ». Le chromatogramme est découpé en fractions exprimées en équivalent carbone (EC): $EC_{>5-8}$, $EC_{>8-10}$, $EC_{>10-12}$, $EC_{>12-16}$, $EC_{>16-21}$ et $EC_{>21-35}$ en prenant comme bornes les n-alcanes C_5 , C_8 , C_{10} , C_{12} , C_{16} , C_{21} et C_{35} (utilisés comme composés marqueurs). Ainsi, l'ensemble des composés aliphatiques et aromatiques ayant des temps de rétention semblables aux n-alcanes est quantifié entre les bornes desdits alcanes. Par exemple, dans la fraction délimitée par les n-alcanes $C_{>12-16}$, seront quantifiés les composés aliphatiques $EC_{>12-16}$ et les composés aromatiques $EC_{>12-16}$.

⁹ Les avis sont partagés à ce sujet. Le MaDEP (US State of Massachusetts Department of Environmental Protection Approach), le TPHCWG, l'ADSTR, le RIVM considèrent que l'additivité des effets qui pourraient affecter différents organes constitue une approche conservatrice. A l'inverse, l'OVAM (2004) et le Canada-Wide Standard for Petroleum Hydrocarbons in Soils (PHC CWS) Development Committee n'acceptent pas l'hypothèse d'additivité des risques dès lors que les composés/fractions n'agissent pas sur un même organe ou selon le même mécanisme de toxicité.

Pour les **fractions globales** constituées d'une seule fraction aliphatique et aromatique, la VS_{H-fraction ECi} se calcule comme suit :

$$\frac{1}{VS_{H-fraction\ ECi}} = \left(\frac{0.3}{VS_{H-fraction\ ECi-arom}} + \frac{0.7}{VS_{H-fraction\ ECi-ali}}\right)$$

Dans la mesure où une fraction globale comprendrait deux fractions aromatiques et deux fractions aliphatiques, la VS_{H-fraction ECi} se calcule comme suit :

$$\frac{1}{VS_{H-fraction\ ECi}} = 0.15 \times \left(\sum \frac{1}{VS_{H-fraction\ ECi-arom}} \right) + 0.35 \times \left(\sum \frac{1}{VS_{H-fraction\ ECi-ali}} \right)$$

B1-2.5.2 Mercure

L'annexe A1 (GRER partie A) présente les deux formes de mercure considérées dans l'étude de risque. Concernant l'élaboration des VSH, il est à noter

- que le mercure inorganique est représenté par le <u>chlorure mercurique HgCl</u>₂ (CAS n°7487-94-7), qui est couramment utilisé dans les études sur la toxicologie et le comportement dans l'environnement du mercure ;
- que le mono-méthylmercure est modélisé sur la base des propriétés du <u>méthylmercure</u> (CAS n°22967-92-6);
- que le mercure métallique (c'est-à-dire le mercure élémentaire Hg⁰) n'a pas été considéré dans l'élaboration des VS_H;
- qu'en l'absence de VTR pour le diméthylmercure, cette forme n'a pu être prise en compte dans l'élaboration de la VS_H du mercure total.

Remarque importante

Le mercure élémentaire devrait être pris en compte - au stade de l'évaluation des risques - dans le cas où les sols auraient été pollués par du mercure métallique compte tenu de ses propriétés de volatilisation dans l'air et de sa toxicité particulièrement importante par inhalation.

B1-2.5.3 Isomères du xylène et du 1,2-dichloroéthène

Etant donné que les isomères ortho-, para- et méta-xylène ont le même mode d'action, une toxicité équivalente et des propriétés physico-chimiques relativement proches, les VS_H déduites pour la somme des xylènes sont une moyenne arithmétique des VS_H des isomères.

La même approche a été retenue pour le calcul des VS_H du 1,2-dichloroéthène à partir des valeurs calculées séparément pour les isomères cis- et trans-1,2-dichloroéthène.

B1-3. Liste des polluants volatils

Les polluants normés et non normés repris dans le logiciel S-Risk® qui sont à considérer comme volatils au sens du GRER sont listés ci-dessous dans le **Tableau 7**. Par convention, un polluant présentant une pression de vapeur supérieure à 10Pa à 20°C est considéré comme volatil¹0.

Tableau 7. Polluants volatils (normés et non normés) présents dans le logiciel S-Risk®

Polluant	pression vapeur (Pa)	temp (°C)	source			
Polluants Normés						
Méthylmercure	1,7611	25	(EC 2001)			
Mercure élémentaire	0,1811	20	(EC 2001)			
Benzène	12516	25	moyenne			
Toluène	3802	25	moyenne			
Éthylbenzène	1280	25	moyenne			
o-xylène	889	25	moyenne			
m-xylène	1121	25	moyenne			
p-xylène	1173	25	moyenne			
Styrène	850	25	moyenne			
Phénol	46,3	10	moyenne			
2-chlorophénol	294	25	moyenne			
Dichlorométhane	46518	20	Verschueren (1983)			
Tétrachlorométhane	12000	20	Van den Berg (1994)			
Trichloroéthène (TCE)	8000	20	Verschueren (1983)			
Tétrachloroéthène (PCE)	2483	25	Verschueren (1983)			
1,1,1-trichloroéthane (1,1,1 TCA)	14346	20	moyenne			
1,1,2-trichloroéthane (1,1,2 TCA)	2533	20	moyenne			
1,2-dichloroéthane (1,2 DCA)	8528	20	moyenne géométrique			
Cis-1,2-dichloroéthène (cis-DCE)	20990	20	régression sur 9 données			
Trans-1,2-dichloroéthène (trans-DCE)	34438	20	régression sur 9 données			

¹⁰ Convention retenue sur base de la définition d'un COV dans les directives européennes : « composé organique volatil (COV) : tout composé organique ayant une pression de vapeur de 0,01 kPa ou plus à une température de 293,15 K ou ayant une volatilité correspondante dans les conditions d'utilisation particulières. » (Directive 1999/13/CE du conseil du 11 mars 1999 relative à la réduction des émissions de composés organiques volatils dues à l'utilisation de solvants organiques dans certaines activités et installations. Cette directive a été abrogée en 2010 puis consolidée le 04/08/2024 : documentsDirective 2010/75/UE du Parlement européen et du Conseil du 24 novembre 2010 relative aux émissions industrielles et aux émissions de l'élevage (prévention et réduction intégrées de la pollution)

¹¹ La norme européenne ne s'applique qu'aux COVs. La convention de 10Pa ne s'applique pas aux composés inorganiques d'autant plus que le méthyl mercure et le mercure élémentaire sont très toxiques par inhalation (OEHHA, 2008).

	T	ı			
Chloroéthène (CV)	332678	20	moyenne géométrique		
Trichlorométhane	20064	20	moyenne géométrique		
Naphtalène	32	25	Perry & Green (1984)		
Méthyl-ter-butyléther	26800	Ś	ECB (2000)		
Cyanure libre	83993	20	ATSDR (1997)		
Fraction EC 5-6 aliphatique	35463	20	TPHCWG (1999)		
Fraction EC>6-8 aliphatique	6383	20	TPHCWG (1999)		
Fraction EC>8-10 aliphatique	638,3	20	TPHCWG (1999)		
Fraction EC>10-12 aliphatique	63,83	20	TPHCWG (1999)		
Fraction EC>8-10 aromatique	638	20	TPHCWG (1999)		
Fraction EC>10-12 aromatique	63,8	20	TPHCWG (1999)		
Polluants Non Normés présents dans S-Risk®					
1,2,3-triméthylbenzène	225	25	moyenne géométrique		
1,2,4-triméthylbenzène	225	25	moyenne géométrique		
1,3,5-triméthylbenzène	326	25	moyenne géométrique		
1,1-dichloroéthane	25771	20	régression sur 13 données		
Monochlorobenzène	1173	20	Verschueren (1983)		
1,2-dichlorobenène	200	20	Verschueren (1983)		
1,3-dichlorobenzène	200	25	Verschueren (1983)		
1,4-dichlorobenzène	80	20	Verschueren (1983)		
1,2,4-trichlorobenzène	18,7	20	Van den Berg (1994)		
2,4-dichlorophénol	25,5	25	moyenne		
Hexane	16000	20	Verschueren (1983)		
Heptane	4700	20	Verschueren (1983)		
Octane	1470	20	Verschueren (1983)		
		l	. ,		

B1-4. Références

API (2001). Risk-based methodologies for evaluating petroleum hydrocarbon Impacts at Oil and natural Gas E&P stes, API publication 4709, API Publishing Services, Washington DC.

Baars A.J., R.M.C. Theelen, P.J.C.M. Janssen, J.M. Hesse, M.E. Van Appeldoorn, M.C.M. Meijerink, L. Verdam & M.J. Zeilmaker. (2001). Re-evaluation of human-toxicological Maximum Permissible Risk levels. RIVM report no 711701025, Bilthoven, The Netherlands.

Cornelis C., Standaert A. & Willems H. (2017). S-Risk version for the Walloon region: Technical guidance document. Final report. 166p. Février 217. Disponible sur https://www.s-risk.be/documents.html

Cornelis C. (2017). S-Risk version for the Walloon region: Technical guidance document – Annex III. 23p. Février 2017. Disponible sur https://www.s-risk.be/documents.html

Franken R.O.G, A.J. Baars, G.H. Crommentuijn, P. Otte. (1999). A proposal for revised Intervention Values for petroleum hydrocarbons ('minerale olie') on base of fractions of petroleum hydrocarbons. RIVM report n° 711701015. Bilthoven, The Netherlands.

Lijzen J.P.A., A.J. Baars, P.F. Otte, M.G.J. Rikken, F.A. Swartjes, E.M.J Verbruggen and A.P van Wezel. (2001). Technical evaluation of the Intervention Values for Soil/Sediment and Groundwater. Human and ecotoxicological risk assessment and derivation of risk limits for soil, aquatic sediment and groundwater. RIVM report n° 711701023. Bilthoven, The Netherlands.

Massachusetts Department of Environmental Protection (MADEP). (2002). Characterizing Risks Posed by Petroleum Contaminated Sites: Implementation of the MADEP VPH/EPH Approach. Policy #WSC-02-411. Final Policy. October 31, 2002.

Massachusetts Department of Environmental Protection (MADEP) (2002). Draft updated Petroleum Hydrocarbon fraction Toxicity Values for the VPH/EPH/APH Methodology, Massachusetts Department of Environmental Protection, Bureau of Waste Site Cleanup, Massachusetts

Nouwen J., C. Cornelis, I. Olivier, J. Provoost. 2001. Voorstel voor bodemsaneringsnormen voor minerale olie. Studie uitgevoerd in opdracht van de OVAM, 2001/IMS/R/, VITO (November 2001).

OEHHA. (2008). Technical support document for noncancer RELs. Appendix D1 - Mercury (inorganic): O. o. E. H. H. Assessment. http://oehha.ca.gov/chemicals/mercury-inorganic

OVAM. (2004). Risico-analyse minerale olie. Basis informatie voor risico evaluaties.

TPHCWG. (1997). Volume 3. Selection of Representative TPH Fractions Based on Fate and Transport Considerations. Amherst, MA, Amherst Scientific Publishers. Total Petroleum Hydrocarbon Criteria Working Group Series. pp. 102.

TPHCWG (1997). Volume 4. Development of fraction specific reference doses (RfDs) and reference concentrations (RfCs) for total petroleum hydrocarbons. Amherst, MA, Amherst Scientific Publishers. Total Petroleum Hydrocarbon Criteria Working Group Series. pp.137.

TPHCWG (1999). Volume 5. Human Health Risk-Based Evaluation of Petroleum Release Sites: Implementing the Working Group Approach. Amherst, MA, Amherst Scientific Publishers. Total Petroleum Hydrocarbon Criteria Working Group Series. 98p.

US-EPA (2013). Guidance document. Development of impact to ground water soil remediation standards using the soil-water partition equation. Version 2.0 – Novembre 2013. 25p. Disponible sur http://www.nj.gov/dep/srp/guidance/rs/partition-equation.pdf.